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Abstract—Social networks can serve as an effective mechanism
for distribution of vulnerability patches and other malware im-
munization code. We propose a novel approach—SocialSwarm—
by which peers exploit distances to their social peers to approx-
imate levels of altruism and to collaborate on flash distribution
of large files. SocialSwarm supports heterogeneous BitTorrent
swarms of mixed social and non-social peers. We implement So-
cialSwarm as an extension to the Rasterbar libtorrent library—
widely used by BitTorrent clients—and evaluate it on a testbed
of 500 independent clients with social distances extracted from
Facebook. We show that SocialSwarm can significantly reduce the
average file distribution time, not only among socially connected
peers, but also among other swarm participants.

I. INTRODUCTION

Online social networks (OSNs) are perpetually increasing

in popularity and utility. Unfortunately, most if not all OSNs

have been heavily exploited for malicious purposes. One of the

oldest and certainly the most pervasive of all OSNs, SMTP-

based email, has been widely used to self-propagate malicious

code, either automatically via client vulnerabilities or manually

via social engineering, in messages sent to unsuspecting or

inexperienced users. When new malicious code enters a social

network, it commonly infects hub nodes—nodes with higher

degrees of connectivity and malware exposure—more quickly

than those users with relatively few social peers.

Brumley et al. [1] have found a technique for automatic

generation of malware based on contents of a patch file.

Computer users can therefore no longer expect a generous time

window for patching their systems before malware is released

to exploit the patch. It is becoming increasingly important

to study and develop counter-malware techniques such as

flash [2] patch distribution, which, like malware itself, exploits

hub, cluster, and relative node distance properties to enhance

security within OSNs. Unfortunately, existing methods for

fast distribution of large files, including typical operating

system and application patch files, suffer from two problems

in comparison with OSN-based malware propagation. First,

systems such as BitTorrent, and its existing derivatives, imple-

ment mechanisms to minimize free-riding; such mechanisms

create inefficiencies. Second, existing peer-to-peer (p2p) file

distribution systems do not ensure that social hubs receive

the highest priority in receiving files; such prioritization of

patch distribution is necessary to effectively counter OSN-

based malware infection campaigns.

The mechanisms used to minimize free-riding are typically

tit-for-tat and auction-based p2p incentives [3]. Although these

incentives are valuable and necessary in fostering collaboration

among purely self-interested individual peers, they come at the

price of reduced efficiency. In order to barter for resources,

BitTorrent reserves bandwidth in the form of unchoke slots [4].

This reserved bandwidth ensures that peers with which a node

is attempting to barter are provided resources of reasonable

value. Clients typically avoid increasing the number of un-

choke slots because increased numbers reduce the value of

each individual unchoke slot thereby increasing the difficulty

of negotiating for higher levels of bandwidth. A client’s offer

of reserved bandwidth to one of its peers does not mean the

bandwidth offered will actually be used. The recipient of the

bandwidth offer may not have a sustained need for chunks held

by the peer or a sustained capability of completely utilizing

the offered bandwidth. This holds true even for systems that

track and attempt to maintain peer reputation across different

swarms [5]. For standard BitTorrent clients that do not track

peer reputation across swarms, there is some probability, given

optimistic unchoking, that peers will be offered and take

bandwidth but will not reciprocate. Such peers are known

as leeches. One of the goals of most p2p reputation-tracking

systems is to handle leeches. Unfortunately, reputation-based

systems are only valuable when kept fresh with a stream of

evidence. For infrequent p2p users, reputation systems are

commonly inaccurate and/or possibly punitive, given the lack

of accumulated reputation evidence.

In this paper, we propose a novel flash file/patch distribution

method, SocialSwarm, which leverages altruism between peers

in an OSN to overcome the necessity of and the inefficiency

created by negotiating for resources. SocialSwarm facilitates

efficient file distribution among social peers. Specifically,

SocialSwarm enables groups or teams of social peers with pre-

established altruism between each other to use resources more

effectively by reducing the requirement of resource bartering

between members of the same team. Assistance to peers

is prioritized proportionally to social altruism. SocialSwarm

also facilitates file distribution between social peers and non-

social peers using the well established BitTorrent mechanism

of resource bartering. SocialSwarm can be described as a

gather-then-share technique. Nodes first work as a team to

interact with anonymous non-social peers, gathering socially

rare chunks of the file being propagated. As the percentage

of chunks held by members of the social group gradually

increases, SocialSwarm-enabled group members turn inward

and share the chunks altruistically among themselves.



Relative levels of altruism toward directly connected social

peers are estimated by SocialSwarm using ratios of recent

reciprocal real-user social network interactions. Direct levels

of altruism, however, cannot be used to determine levels of

altruism between indirectly connected social peers. With the

goal of facilitating the approximation of relative levels of

altruism among indirect social peers, we introduce a new

metric: SocialDistance. SocialDistance is a synthetic metric

that combines direct levels of altruism between peers with

an altruism decay for each hop to approximate indirect levels

of altruism. The resulting multi-hop altruism levels are used

by social peers to proportion and prioritize the sharing of

resources with other social peers.

We evaluate the effectiveness of SocialSwarm by imple-

menting it as an extension to the Rasterbar libtorrent library [6]

and deploy it on a testbed of 500 clients. Each client is

assigned the identity of a real-world Facebook user and given

connectivity characteristics of real world networks. We find

that SocialSwarm achieves an average file download time re-

duction of 25% to 35% in comparison with standard BitTorrent

under a variety of configurations and conditions including file

sizes, maximum SocialDistance, as well as leech and seed

counts. The most socially connected peers yield up to a 47%

decrease in download completion time in comparison with

average non-social BitTorrent swarms.

The rest of this paper is organized as follows. In Section II,

we present relevant related work. In Section III, we introduce

SocialDistance as an approximation of levels of altruism

between peers in a social network and present the details

of SocialSwarm which exploits the altruism approximations.

Section IV constitutes an overview of our implementation of

SocialSwarm. In Section V, we evaluate the performance of

SocialSwarm. We conclude with a list of several areas for

further investigation in Section VI.

II. RELATED WORK

P2P networks, when compared to static single-source mod-

els, have exhibited faster transmission time and greater robust-

ness in dissemination of large files [7]. These advantages have

been repeatedly acknowledged in research on security patch

propagation where the standard model for patch dissemination

is p2p in nature [8], [9].

Gossip-based protocols have been successful in improving

BitTorrent’s file dissemination time. For example, CREW [10],

a gossip-based protocol, clearly outperforms other p2p proto-

cols including BitTorrent for small-sized (1MB) files. How-

ever, for bigger file sizes, CREW incurs a higher overhead than

non-gossip-based protocols. Lind et al. [11] show how small

messages spread over social networks through gossip. Our

work, however, focuses on the propagation of large files, which

have very different propagation characteristics in comparison

with small files and messages.

BitThief [12] highlights the free rider vulnerability of Bit-

Torrent by demonstrating that entire files can be downloaded

without reciprocation. Augmenting BitTorrent to handle the

free riding problem has been the focus of numerous research

exercises [13], [14]. The key idea of these solutions is to

establish a trust value that a peer accumulates over the course

of time. The trust metric thus penalizes peers that do not share

and rewards those who are active sharers. Although the notion

of trust is a step in the right direction, the peers that participate

in a typical p2p swarm change constantly and the benefit of

having a trust metric is often lost.

Zhu et al. [15] propose a novel method of worm containment

in cellular networks by prioritizing the patching of mobile

peers based on their social connectivity. Our technique of col-

laborative patch distribution—based on social trust on a high

level—exploits the same connectedness property proposed by

Zhu, but unlike his work, we do not assume any global or

centralized knowledge of social connectivity between peers.

Friedman [16] describes the motivation of utilizing the

social network as an excellent medium for patch distribution.

One of the more convincing reasons presented is that OSNs

like real life social networks tend to follow social norms. If

computer security is treated as a given norm, a good peer

would expeditiously forward a patch file to its social peers:

first, to enhance the overall security of the social ecosystem,

and, more importantly, to protect itself by having peer nodes

that are malware-immune. Our work matches the efficiency of

a p2p system with the complex dynamics of a social swarm

to create a unique and robust file distribution system.

Different methodologies have been tried to incentivize

sharing in social networks. 2Fast encourages sharing in a

traditional p2p network by introducing the concept of “helper”

peers, which assist “collector” peers—nodes interested in

downloading a particular file [17]. The helpers use their

idle bandwidth to collect chunks under the direction of the

collectors with the ulterior motive that the collectors will help

when the helpers need to download a file.

KARMA [18] proposes an incentive system with a more

fluid “currency-like” mechanism, where a node can transfer

some of its positive currency balance to bootstrap a lower

placed node. Our work uses a multi-hop-based incentive metric

that automatically confers the advantage of being associated

with a higher placed node or even being part of a higher trust

path.

The Tribler [19] system extends 2Fast to social networks by

applying the concept of helper and collector peers to social

cliques extracted from p2p networks by grouping peers of

similar characteristics. Although the concept of a drone helper

to retrieve content is useful for assisting a peer with the

retrieval of some content, it does not assist a large group of

social peers in identifying and retrieving socially rare chunks.

We share with Tribler the common goal of harnessing a

social network for file distribution, but our work differs from

Tribler’s in several meaningful ways. The collaborative down-

load in Tribler needs “helper” nodes that do not participate

in the actual file being distributed. This is in contrast to our

work, where all the nodes in the swarm actively collaborate

in the file being shared. Another important operational aspect

of Tribler is that the helper nodes need explicit approval from

the collector node regarding the uniqueness and rarity of a file



chunk before downloading it on behalf of the collector node.

We develop the notion of social rarity of a chunk that gives a

node sufficient confidence to download a chunk that is socially

relevant to the clique to which it belongs. Tribler’s incentive

mechanism does not allow for a transitive relationship between

a prospective collector node and a helper node. All incentives

that are reclaimed correspond to the direct interactions in the

past between the nodes in purview.

The standard BitTorrent protocol uses a fixed and small

number (typically 5 to 8) of unchoke slots for playing tit-

for-tat with swarm members. When a peer joins a swarm,

it initially chooses a random chunk to download and then

begins to offer this chunk to barter with other swarm mem-

bers. During these initial stages of bootstrapping swarm entry

and tit-for-tat negotiation, some portion of the peer’s upload

bandwidth is underutilized given the small and fixed number

of unchoke slots. As has been shown in the SeCond [20]

protocol, a more efficient use of p2p bandwidth is to freely

share it with swarm peers regardless of reciprocity. Although

free bandwidth sharing is more efficient, it is vulnerable to

exploitation by any purely self-interested swarm member. Tit-

for-tat thus serves as a required and effective enforcement

mechanism for minimizing the level of free-riding possible

in a swarm whose members are purely self interested.

Karame et al. [21] defend the analytical rationale behind

decomposing p2p peers engaged in a collaborative download

into “small coalitions” to give a near-optimal file distribution

time. The key idea of this work is that the aggregation of

locally optimal solutions obtained in the smaller teams form

a globally optimal solution, which is often very expensive to

compute if the problem is not decomposed. Our work builds

upon these conclusions by engaging social peers to work

together as teams.

Dynamic configuration of p2p peers of similar characteris-

tics into teams has been shown to limit free riding in collabora-

tive downloads [22]. A common approach tried in team-based

collaborative downloads is to presume altruism with social

peers while employing tit-for-tat policy with non-social peers.

This model has been studied by Galuba et al. [23] where

preference is always given to peers. In contrast, we employ

a “gather-then-share” approach with social peers where the

altruism exhibited with social peers is inversely proportional

to the overall rarity of the file chunks. Our approach gives

faster file dissemination because the social peers actively try

to get file chunks that are rare in the group, which ultimately

benefits the group in later stages when altruism comes into

play.

The notion of trust applied to social networks is a promising

method to encourage sharing. SPROUT [24] models a social

network-based routing scheme where the path selected has

peers contributing to the highest computed gross trust value.

We extend the multi-hop notion of trust to generate altruism

values for spatially distant non-peers by combining the inter-

mediate altruism values and a linear decay factor proportional

to spatial distance. Different approaches to trust computation

over multiple hop distances have been tried. Walter et al. [25]

calculate the trust of a node at a given distance to be the

product of the trust of all nodes along the path. Decay-

based multi-hop trust metrics have been studied extensively

by Marti et al. [24]. Decay-based models are advantageous

because they adhere to the social network trust model of

having more confidence in nodes closer to the source. We

chose to implement a linear decay-based model, which is

shown in the aforementioned work, to perform equally as well

as the exponential decay-based model.

III. SOCIALSWARM DESIGN

SocialSwarm combines tit-for-tat/auction between non-

social peers with an altruistic sharing of resources among

social peers. A SocialSwarm client freely offers bandwidth

to its social peers based on each of their SocialDistances. For

non-social peers as well as those who are distant socially, a

peer uses the standard BitTorrent method of engaging in tit-

for-tat to negotiate bandwidth. In section III-A we provide an

overview of the design of SocialSwarm, which is followed,

in section III-B, by details on the notations we use. Finally,

section III-C provides the core details of how these notations

are combined and used within SocialSwarm.

A. Overview

With the goal of maximizing collaboration between social

peers by reducing the inefficiencies of BitTorrent while still

maintaining game-based techniques to encourage the cooper-

ation of non-social peers, we have developed the following

design characteristics for SocialSwarm.

• Full compatibility with the BitTorrent protocol: Social-

Swarm is designed to leverage the existing benefits of

the BitTorrent protocol, while enhancing the capabilities

of BitTorrent clients to collaborate with social peers.

SocialSwarm thus adapts to mixed swarms of socially

connected and non-socially connected peers.

• Social network independence: With its modular social

network analyzer, SocialSwarm can exploit the history

of connectivity and interaction among social peers within

any capable social networking system, obviating reliance

on any particular social protocol or messaging system.

• Coordination of chunk collection among social peers:

Like standard BitTorrent, SocialSwarm begins by relying

on peers seeking chunks of data that are rare system-wide.

Over time, however, SocialSwarm increasingly seeks after

chunks that are rare among social peers only—socially

rare chunks. Thus, as a file download progresses, a peer

transitions its focus from globally rare chunks towards

socially rare chunks. This transition of chunk collection

focus is the “gather” portion of the “gather-then-share”

approach and is detailed in section III-C2.

• Adaptive unchoke slot count and upload bandwidth allo-

cation: Like standard BitTorrent, SocialSwarm begins by

allocating a fixed number of unchoke slots for playing tit-

for-tat/auction games with non-socially connected peers.

Over time as more chunks are acquired by social peers,

SocialSwarm gradually decreases the number of unchoke



Fig. 1: SocialSwarm Interaction Overview

slots allocated to tit-for-tat/auction and re-purposes the

bandwidth associated with those slots, offering unchoke

slots freely to social peers who are granted bandwidth

with a priority based on SocialDistance. This adaptive

bandwidth allocation is the “share” portion of the “gather-

then-share” approach and is detailed in section III-C1.

• Targeted non-social peer selection for optimistic unchoke:

Rather than a commonly used metric of time-since-last-

unchoke for optimistic unchoke peer selection, Social-

Swarm is designed to select peers probabilistically based

on the social rarity of file pieces that they hold. Details

of this peer selection method are given in section III-C3.

Fig. 1 presents an example of how SocialSwarm running on

Bob’s client retrieves social peer interaction history from social

networks on behalf of Bob. When a file distribution swarm

starts, Bob’s SocialSwarm client identifies Bob’s social peers

in the swarm, coordinates chunk collection with them, and

altruistically shares bandwidth with them. The SocialSwarm

clients interact with each other as well as with standard (non-

social) BitTorrent clients. In this example Jim’s SocialSwarm

client also has a connection to a leech. Although Jim initially

uses resource bartering and preallocates resources to negotiate

with the leech, over time Jim reserves less bandwidth for

resource bartering and openly shares its bandwidth with its

social peers. By reserving fewer resources for specific peers,

Jim’s risk is diversified given that his reliance on any particular

node is reduced. Thus, even though Jim is not explicitly aware

of the leech, SocialSwarm’s diversified collaboration allows it

to be less affected by the leech in comparison with standard

BitTorrent clients.

B. Notations

Table I provides an overview of the given, measured, and

derived variables used by SocialSwarm. All variables are

from the perspective of each node in the system. Each node

independently receives, measures, and derives its own set of

variables. Each measured variable is over a time period of

ti. Each derived variable is recalculated each ti. The given

TABLE I: Notations

Given
Variables Descriptions

A(a, b) Normalized level (0,1] of altruism a has towards
a social peer b.

A(s) The short form of A(myself, s)

Ds(a, b) SocialDistance between a and b

DsMax Maximum SocialDistance whereby a client considers
peers to be part of its social network.

C Set of chunks in the file being downloaded.
Knowledge of this set is provided by the .torrent file
used to start the swarm.

ti The time interval i. The interval used here is the
optimistic unchoke interval (commonly 30 seconds).

S The set of social peers (Ds << ∞)
that are using a SocialSwarm-enabled BitTorrent client.
To form S, a list of all peers is retrieved from the
torrent tracker; non-social peers are excluded.

N The set of all other (non-social) peers participating in
the swarm (where SocialDistance = ∞).
To form S, a list of all peers is retrieved
from the torrent tracker, and social peers are excluded.

Measured
Variables Descriptions

V (ti, c, n) 0 or 1 indicating the availability of a particular chunk, c,
at a particular peer, n, at time interval ti.
This information is shared between peers and the tracker
as part of the BitTorrent protocol.

Bs(ti) The percentage of a client’s upload bandwidth
used at ti for altruistic sharing with its social peers.
(each client measures its own bandwidth)

Bn(ti) The percentage of a client’s upload bandwidth
used at ti for bartering with its non-social peers.
(each client measures its own bandwidth)

Ro(ti, c) The overall rarity of a chunk c across all peers,
social and non-social, at ti.

Rs(ti, c) The social rarity of a chunk c across its set S of social
peers at ti.

Rn(ti, c) The non-social rarity of a chunk c across its set N of
non-social peers at ti.

Derived
Variables Descriptions

Rw(ti, c) The combined weighted rarity at ti.

RA(ti) The average social rarity across all the chunks C at ti.

H(ti, p) The weighted rarity of chunks held by a peer p at ti.

and measured variables that could not be fully described in

the Table are described in detail in this section. The next

section (III-C) describes the derived variables along with the

SocialSwarm algorithm.

1) Altruism Between Direct Social Peers: Altruism between

two social peers should not be considered a dichotomy but

rather a scale ranging from minimal to very high. Prompting

system users to quantify levels of altruism for each of their

social peers would be cumbersome and impractical. Instead



SocialSwarm calculates a proportional and directed level of

altruism between each given peer a and one of its peers b via

equation (1).

A(a, b) =
I(a, b)

I(a, all)
(1)

where I(a, b) is the number of reciprocal interactions a has had

within a given time window with b, and I(a, all) is the number

of reciprocal interactions a has had with all of its peers during

the same window of time. Effectively A(a, b) represents the

proportional willingness that a peer a has to share resources

with each of its direct peers. It is important to note that A(a, b)
is from the perspective of a and is asymmetric.

2) Approximating SocialDistance Between Indirect (Multi-

Hop) Peers: The SocialDistance between two direct or indirect

peers can be considered the inverse of the altruism between

those peers: Ds(a, b) = 1
A(a,b) . Although SocialDistance

itself does not have any absolute meaning, it is a useful

synthetic metric to assess relative depreciation of altruism

across intermediate peers and to determine which indirect

paths between peers yield the highest levels of altruism (the

shortest SocialDistance paths). It is important to note that

altruism between two peers, A(a, b), is asymmetric and thus

SocialDistance, Ds(a, b), is also asymmetric.

Given the known levels of SocialDistance across two pairs

of social peers Ds(a, b) and Ds(b, c), SocialSwarm calculates

a candidate multi-hop-directed SocialDistance from a to c with

equation (2).

Ds(a, c)candidate =
(

1
1

Ds(a,b)
× 1

Ds(b,c)
×HopDecay

)

(2)

Where HopDecay is between 0 and 1 and is set by the

evaluating peer a, the SocialDistance between any pair of peers

(x, z) indirectly connected via a set of intermediary peers I is

defined as the highest altruism level among all known paths

between x and z. SocialDistance is calculated via equation

(3).

Ds(x, z) =

∀i ∈ I : min

(

1
1

Ds(x,i)
× 1

Ds(i,z)
×HopDecay

)

where

(

1
1

Ds(x,i)
× 1

Ds(i,z)
×HopDecay

)

≤ DsMax (3)

HopDecay is thus applied for each additional hop in a

given social network path. Note that SocialSwarm narrows

its search to a computationally reasonable search space by

using a specified maximum useful SocialDistance (DsMax)

beyond which peers are not considered as social peers. These

calculations are very similar to those of Dijkstra to find

shortest paths; but instead of adding path lengths, SocialSwarm

multiplies approximated levels of altruism.

For computing cumulative altruism values for a non-social

peer who is multiple hops away, we take the product of the

TABLE II: SocialSwarm in a Nutshell

SocialSwarm Action Input Heuristic

1 Vary % bandwidth offered % of game completed (from social
to social vs non-social peers group perspective)

2 Vary the set of targeted chunks Bandwidth % used
based on the group (social or by social &
non-social) being collaborated non-social peers

with currently

3 Probabilistically unchoke Rank peers based
the non-social peers that on the rarity of

hold the most desired the chunks that they
chunks hold

individual altruism values along the path. This conforms to the

social network convention of having the decrease in altruism

value proportional to the relative distance. The same rationale

holds for having a linear HopDecay applied at each hop on

the multi-node path between two peers.

3) Approximating Altruism Between Indirect (Multi-Hop)

Peers: For all peers a and c for which there exists no direct

social relationship, the Altruism between a and c is defined

as the inverse of the SocialDistance between those peers:

A(a, c) = 1
Ds(a,c)

4) Overall Rarity for Each Given Chunk: For each given

chunk c, a peer calculates the overall rarity of the chunk across

all peers in the swarm (peers in S and N ) via equation (4).

Ro(ti, c) =

{

1 if |S ∪N | = 0

1−
∑

n∈S∪N
V (ti,c,n)

|S∪N | otherwise
(4)

5) Social Rarity for Each Given Chunk: For each given

chunk c, a peer calculates the rarity of the chunk across its set

S of social peers using equation (5).

Rs(ti, c) =










1 if
∑

s∈S A(s) = 0

1−
∑

s∈S
A(s)∗V (ti ,c,s)∑
s∈S

A(s) otherwise

(5)

This equation allows each node to weigh the priority of each

chunk proportionally with the altruism expressed towards each

of the node’s online and in-swarm social peers. The chunks

that are rare to social peers connected by shorter SocialDis-

tances, and thus higher levels of altruism, are assigned a higher

priority than the chucks that are rare to peers connected by

higher SocialDistances.

6) Non-social Rarity for Each Given Chunk: A peer calcu-

lates the rarity of a given chunk across its set N of non-social

peers using equation (6).

Rn(ti, c) =

{

1 if |N | = 0

1−
∑

n∈N
V (ti,c,n)

|N | otherwise
(6)

C. SocialSwarm Algorithm

SocialSwarm varies the behavior of standard BitTorrent in

three basic ways. Table II lists these three changes with their

respective input heuristics. Each of these actions and heuristics

is described in detail below:



1) Adaptive Bandwidth Allocation: SocialSwarm leverages

munificence between social peers by dynamically allocating a

portion of available bandwidth toward free bandwidth sharing

with social peers.

Karame et al. [21] show that combining locally optimal

solutions of the smaller social teams would give a globally

optimal solution for the entire social network. Hence, we

introduce a concept of social rarity that is unique to different

cliques in the social graph and is easy to compute. We

also incorporate the overall rarity of a chunk to get a fair

representation of actual rarity.

As the allocation level of bandwidth for social peers in-

creases and is actively used, the number of unchoke slots

available for bartering with non-social swarm peers decreases.

To determine what portion of its available upload bandwidth

a client should allocate to social peers, SocialSwarm uses the

average rarity of chunks across social peers as a heuristic.

Effectively the assessment of the rarity of all chunks across

social peers is how SocialSwarm determines the stage of the

game.

A SocialSwarm client estimates the average social rarity

for all chunks at each ti by normalizing the social rarity of all

individual chunks by the chunk count using equation (7).

RA(ti) =

∑

c∈C Rs(ti, c)

|C|
(7)

A SocialSwarm client then allocates a certain maximum per-

centage of its bandwidth (MaxSocialBandwidth=(1−RA(ti)))
for use with its social peers. Using levels of altruism towards

social peers, a SocialSwarm client will put its social peers into

an ordered list. Starting at the top of this list (those peers with

the highest altruism), a peer will unchoke its social peers one

by one until either the predetermined MaxSocialBandwidth

percentage of upload capacity has fully been consumed by its

social peers or a maximum limit on unchoked social peers is

reached. This method ensures that the peers with the highest

amount of aggregate social altruism—typically those peers

who have a higher degree of connectivity—are allocated the

greatest bandwidth and thus are potentially able to receive the

file faster than peers with lower degrees of social connectivity.

All bandwidth not allocated or consumed by social peers is

allocated to traditional BitTorrent unchoke slots (of reasonable

size) and used for bandwidth bartering.

2) Chunk Prioritization: When social clients initially join

swarms and when social bandwidth available from social peers

is scarce, they must barter for bandwidth and chunks with non-

social peers. Initially, clients will target chunks that are rare

across non-social peers. As social peers acquire an increasing

percentage of chunks, the average rarity of chunks across

social nodes decreases and more bandwidth is allocated toward

social purposes. As social peers increase their usage of this

bandwidth, a client will increasingly target chunks that are

rare across social peers (as opposed to chunks that are rare

across non-social peers).

SocialSwarm is thus analogous to a real-world tribe or

clan whose members initially barter with non-clan members

for goods not yet available in the clan. As more goods

are obtained by clan members, they gradually decrease their

external bartering and increase the amount of free sharing of

goods within the clan. The amount of bartering with external,

self-interested entities is thus determined by the availability of

goods (chunks) within the clan. Here, availability is defined

as both chunk possession and ability to share (bandwidth

availability).

A SocialSwarm client accomplishes this collaboration by

varying its calculation of chunk rarity based on the percentage

of bandwidth actively being used by social peers, denoted by

Bs(ti), and the percentage of bandwidth used by non-social

peers, denoted by Bn(ti). Both Bn(ti) and Bs(ti) may be 0%

concurrently if none of a node’s bandwidth is being used by

any of its peers.

The level of influence that social peers’ chunk holdings exert

over a node’s concept of chunk rarity increases as the level

of bandwidth sharing among social peers increases. When the

majority of its bandwidth is used for bartering with non-social

peers (when Bn(ti) is large), a SocialSwarm client will focus

mostly on chunks that are rare across non-social nodes by

making Rn(ti, c) dominant. Alternatively, when the majority

of its bandwidth is used for collaboration with social peers

(when Bs(ti) is large), a SocialSwarm client will focus mostly

on chunks that are rare across social nodes by making Rs(ti, c)
dominant. When little of its bandwidth is in use (when both

Bn(ti) and Bs(ti) are small), a SocialSwarm client will use

the traditional BitTorrent algorithm of focusing on chunks rare

to the swarm overall by making Ro(ti, c) dominant.

Thus using its current Bs(ti) and Bn(ti) bandwidth per-

centages as weights, a SocialSwarm client combines the social,

non-social, and overall rarities to form a combined weighted

rarity for each given chunk as follows:

Rw(ti, c) = Rn(ti, c)∗Bn(ti)+

Rs(ti, c)∗Bs(ti)+

Ro(ti, c)∗(1 −Bn(ti)−Bs(ti)) (8)

A SocialSwarm client prioritizes the download of chunks

from its connected peers based on their combined weighted

rarity, Rw(ti, c). This allows a client to coordinate its collec-

tion of socially rare chunks with its social peers.

3) Optimistic Unchoke Candidate Selection: Typical Bit-

Torrent implementations use either random selection or a

longest-since-unchoke heuristic in deciding which peer should

be optimistically unchoked for the next round. SocialSwarm

instead probabilistically selects a peer out of a prioritized list

ordered on availability of rare chunks at each peer. Thus a

peer will target a peer with the largest group of rare chunks

at each time interval ti by calculating the level of rare chunks

held by each peer using equation (9).

For p ∈ S ∪N,

H(ti, p) =

∑

c∈C V (ti, c, p)× Rw(ti, c)

|C|

(9)



Using its list of social peers ordered on H(ti, p), a peer will

randomly choose the next peer for probabilistic unchoke using

proportional selection based also on H(ti, p).

IV. IMPLEMENTATION AND TEST SETUP

In this section, we first present details of our SocialSwarm

implementation. Second, we provide an overview of our test

infrastructure. Next, we discuss the social network data set

used to drive our tests, and finally, we analyze the performance

of SocialSwarm in comparison with the standard BitTorrent

protocol.

A. Implementation

We implement the SocialSwarm algorithm as an extension

to the Rasterbar libtorrent library [6] version 0.13.1. Libtorrent

is a library leveraged by a variety of different GUI- and

text-based front ends to provide full BitTorrent functionality.

Enhancing libtorrent with SocialSwarm as an extension allows

SocialSwarm to be used with a variety of existing BitTorrent

clients. To evaluate the SocialSwarm BitTorrent extension, we

use an unmodified version of qBittorrent v1.1.0, a Qt-based

libtorrent front end [26].

SocialSwarm-enabled libtorrent receives a list of known so-

cial peers, including relative SocialDistances for each peer and

the peer’s most recent known global IP address. SocialSwarm

compares its list of known social peer IP addresses with the

IP addresses of each of the peers in BitTorrent swarms as

received from the BitTorrent tracker to find social peers who

are participating in each swarm. Once a social peer is iden-

tified, SocialSwarm-enabled libtorrent uses a new flag on the

BitTorrent extended peer handshake to determine if the social

peer is SocialSwarm-enabled. If a social peer is identified, but

does not support the SocialSwarm protocol, then SocialSwarm

libtorrent will treat the peer as a non-social peer. Apart from

matching IP addresses and checking its SocialSwarm flag,

SocialSwarm currently does no other social peer verification.

A social network analyzer is developed to take a set of user

interactions within the social network—in this case Facebook

wall postings—and first calculate proportional levels of direct

altruism between the Facebook users in the data set and then

calculate levels of indirect altruism. More details are found in

the next section.

B. Social Network Data Set

To evaluate SocialSwarm, we use an anonymized data

set from interactions—wall postings—of 500 Facebook

users [27]. For each social network member, we analyze

the number of reciprocal wall postings within a given time

period. Each pair of reciprocal postings is considered a single

interaction. These interactions are used to determine the single-

hop/direct levels of altruism between Facebook users. We use

the inverse of this altruism as our single-hop/direct SocialDis-

tance between peers. Using these single-hop SocialDistances,

we calculate the multi-hop altruism and SocialDistances using

a HopDecay of 0.95 with the method described in Section III.

After constructing the social tree for all users in the Facebook

data set, we choose a single peer and do a breadth first walk

over the tree until a total of 500 social peers is selected

(traversed). We then assign each of these 500 social peers to

a virtual SocialSwarm client for our evaluation. Each node

has knowledge only of its own social peers (rather than

global knowledge) and considers all other nodes outside of

its maximum SocialDistance as “non-social.”

Each client is assigned a unique virtual machine with a

unique IP address. We make the assumption that the social

network analyzer has a method of determining a public IP

address for known social peers. This IP address determination

would occur either via extraction from existing social network

interactions or some extension to those interactions that en-

ables extraction of peer IP addresses for direct and indirect

social peers. IP address identification of users is dependent on

the social network being used. Email, for example, commonly

includes the IP address of the original sender as one of the

headers. This is also true for certain webmail systems, such

as Hotmail and Yahoo mail. There are methods of obtaining

users’ IP addresses on MySpace [28], [29] and until recently,

IP addresses of Facebook users could be directly extracted

from the email notifications sent on activity between social

peers, such as wall postings [30]. This information, when

coupled with the peer interaction data set, could uniquely give

the IP addresses of the users helping to bootstrap our social

network. To incorporate dynamically changing IP addresses,

Koolean [31] proposes a solution whereby each user is associ-

ated with a permanent identifier and coupled with a challenge-

response mechanism with the social peers, the user is verified,

and the current IP address of the user is deemed authentic.

The updated connection details of the newly joined peer are

distributed across the social network. Because the main focus

in our work is to demonstrate faster file distribution, we have

not yet incorporated automatic identification of social peer IP

addresses into the social network analyzer.

The 500 users in our experiments were extracted from

a much larger data set of Facebook wall postings which

contained over 43,000 nodes in total. We thus utilized less

than 1.2% of the total social network data set. Unlike our

evaluation nodes, real-world users of SocialSwarm would not

be restricted to searching for social peers among an isolated

group of 500 nodes, but rather could search for and utilize any

available peers on their full social network within their chosen

max SocialDistance. For example, by increasing the number

of social network nodes that we included in our analysis to

5000 and given no variation in maximum SocialDistance, we

found a 55% average increase in the number of peers a node

would consider as its peers. Fig. 2 shows the number of single-

hop/direct and multi-hop peers each node considers as part of

its social network given a maximum SocialDistance. Fig. 3

shows the number of peers each node considers as part of its

social network when the subset of the data is expanded to in-

clude 5000 nodes total. Although our experiments constrained

each node to search only for social peers within a very small

subset of the social network, and given the differences between

Fig. 2 and Fig. 3, it is clear that in real-world deployments of
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SocialSwarm nodes would have many additional peers from

which to choose.

A peer continues a shortest-path-first search of its social

network adding new social peers until some maximum allow-

able SocialDistance is reached. Based on this Facebook data

set, Fig. 4 shows the average number of social peers each

user has in relation to the maximum allowable SocialDistance.

Although the number of additional peers continues to increase

at a reasonable rate with greater SocialDistances, the relative

altruism expressed toward those additional peers significantly

degrades. Fig. 5 shows the average altruism expressed by

each node to its social peers as the maximum SocialDistance

is varied. This figure shows a drop off in altruism increase

beyond a maximum SocialDistance of 150 to 200.

It is important to note that SocialSwarm is not dependent

on any specific social peers being online or available, So-

cialDistance is used for prioritizing bandwidth offered. Any

unused bandwidth due to offline peers will be offered to

other social peers who are online, even if they have a higher

SocialDistance. If no social peers are online or if those that

are online are not consuming bandwidth, then SocialSwarm

will revert to interacting with non-social peers exclusively.
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C. Test Infrastructure

Our testbed consists of 20 high-performance servers. Each

server has 24GB of RAM and 8 Intel-based Xeon CPU cores

(two quad core Xeon L5420 processors per system). All

servers are fully connected through a gigabit switch with a

fully connected 68Gbps back-plane. A torrent tracker is run

on a separate machine that also has full gigabit connectivity

to the same network switch. On each server, we create 25

virtual clients for a total of 500 virtual clients. Each client

runs Debian Linux version 5.0.3 inside of an OpenVZ virtual

container. The storage for each virtual container is located on

a set of high performance SAN arrays with 15K rpm drives to

ensure that the probability of I/O contention is minimized.

Network tuning and shaping is put in place so that each

virtual client can be tuned independently with each of the

following metrics: incoming maximum throughput, outgoing

maximum throughput, incoming packet latency, and outgoing

packet latency.

CPU, network, memory, and disk I/O are monitored on all

servers to ensure that resource contention between the virtual

environments did not occur.



TABLE III: Baseline Test Parameters

Parameter Value

File Size 25 MB

RTT Inter-peer Latency 48 ms

Altruism HopDecay 0.95

Maximum SocialDistance (DsMax) 400

Maximum Number of Concurrently 30
Unchoked Social Peers

Leeches (Non-contributing Peers) 0

Seed Bandwidth 2.5MB/sec

V. EVALUATION

We evaluate SocialSwarm using the infrastructure described

in section IV-C. We now provide an overview of our testing

methodology, followed by the results of our evaluation.

A. Evaluation Methodology and Criteria

In order to evaluate the flash-file distribution speeds of

SocialSwarm in comparison with standard BitTorrent, we pre-

load a single peer in the system with the file contents, making

it the sole seed for the system. We then start all clients within

10 seconds of each other. We assume that in real-world use,

external mechanisms for communicating torrent availability

and automatic triggering of swarm participation exist. Likely

such a mechanism would use messaging capabilities of the

social networks themselves. In all experiments, we use the

parameters, shown in Table III, as input to each of the tests,

unless otherwise specified.

The network configuration (including latency between

peers) was made independent of each node’s social connectiv-

ity. A vast majority (489 peers) of the 500 peers are assigned

a maximum upload bandwidth of 256Kbit (32KB) per second

and a maximum download bandwidth of 1Mbit (128KB) per

second. The remaining 11 peers are assigned a maximum

upload bandwidth of 2.5MB/second and a maximum download

bandwidth of 5MB/second. One of these 11 high-speed peers

is chosen as the seed. These bandwidth capabilities attempt to

simulate a mix of home users with slower Internet connections

combined with a few corporate/educational/FTTH (fiber-to-

the-home) users (including the seed) with much faster Internet

connections [32]. Each data point provided in this section

represents an average across 10 runs, with each run using an

identical configuration of nodes including seeds.

B. Comparison of Basic Download Time

In this section, we evaluate the average download time of

SocialSwarm compared to that of standard BitTorrent. One of

our first tests is to compare the average time required for a

single file to be dispersed to all participating peers.

Fig. 6 provides a cumulative density function (CDF) of the

500 peer file distribution time for a fully socially enabled run

as well as a non-socially enabled run.

As shown in Table IV, the average download time of

SocialSwarm for the 499 peers is reduced by 25.7% compared

to BitTorrent. The performance gain (33.5%) for the most
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TABLE IV: Average Download Time & Percent

Improvement with a 99% confidence interval

Non-social Social Top 1% Bottom 1%
Social Social

Download Time (sec) 654±11 486±3 435±17 551±22
Improvement (%) base 25.7 33.5 15.7

socially connected peers (top 1%) is greater than the one

(15.7%) of the least socially connected peers (bottom 1%).

Fig. 7 shows the average download rate per peer over time.

The first minute or so of the experiment shows a significant

spike and fluctuation in the download rate for all peers. This

is due to the fact that all peers are initiating connections with

the tracker as well as with each other. All peers are sharing

chunk availability maps with every other peer with which they

initiate connections. After about 180 seconds, the non-social

peers level out in their sustained bandwidth usage. The social

peers, however, slowly allocate more bandwidth to social peers

as the average social rarity of chunks decreases; this is shown

in Fig. 8. It is this bandwidth surge—the peak of which is
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around 400 seconds into the test—that allows social peers to

complete earlier and turn into seeds earlier.

The results of the first 60 seconds of average social rarity

are inaccurate due to lack of social peer and chunk availability

information during system start-up and initialization. Social

peers must find and establish connections with other social

peers, then receive piece availability bitmaps from those social

peers before declaring that chunks are truly socially rare.

These figures show that for both social and non-social

swarms, rarity of chunks nears zero around 200 seconds before

the download rate nears zero. This is because rarity is averaged

across both downloading clients and seeds. Swarm participants

that become seeds earlier do not necessarily decrease the

average bandwidth used per node. The unchoke slots vacated

by these newly formed seeds are quickly reoccupied by other

peers, and the new seeds reduce the average rarity of chunks.

C. Effect of File Size

In order to see the impact of file size on the performance of

flash file distribution, we use four different file sizes from 25M

to 100M, increased by 25M, as shown in Fig. 9. The x-axis

represents the file size and the y-axis shows the average peer

throughput (KB/s). With an increase of file size from 25MB
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TABLE V: Average Download Time and Improvement for

Two Seeds

Non-Social Social

1 Seed (sec) 654 491
2 Seeds (sec) 649 486

Improvement (%) 0.6 1.1

to 100MB the performance of standard BitTorrent increased

by 4% on average and the performance between social nodes

increased by 9% on average.

It is observed that the greatest increase in bandwidth is

realized by the most socially connected peers. The 1% of peers

in the system with the highest degree of social connectivity

realized a 16% increase in performance between a 25MB file

and a 100MB file.

D. Maximum SocialDistance

Maximum SocialDistance (DsMax) is one of the important

parameters in SocialSwarm. By way of review, this is the

maximal SocialDistance whereby a peer would consider a peer

to be part of its social network. Maximum SocialDistance can

thus be considered as a radius from a peer to the perimeter of

its social network.

Fig. 10 shows the average per peer throughput as maximum

SocialDistance is increased. A maximum SocialDistance of 0

is effectively the same as disabling the SocialSwarm protocol.

It can be seen that even low maximums of SocialDistance—

such as 25—yield considerable improvements in per-client

throughput compared with non-social clients. As bandwidth

utilization improves while increasing the maximum SocialD-

istance, the percentage of improvement decreases at each step.

E. Effect of Additional Seed Capacity

Table V shows the negligible effect of adding a second

high bandwidth seed into the system. This reinforces the fact

that BitTorrent’s performance is much more dependent on

p2p bandwidth and unchoke slot availability than on seed

bandwidth.
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TABLE VI: Average Download Time Based on # of Leeches

Leech Count Non-Social Time (sec) Social Time (sec)

0 658 489

100 755 535

200 870 566

F. Effect of Leeches

We conduct several experiments to identify how Social-

Swarm compares with standard BitTorrent when faced with

varied numbers of non-social leeches (additional peers each

consuming bandwidth from the system but not contributing

reciprocally). We make the assumption that unless they are

infected with malware, SocialSwarm-enabled peers will typ-

ically behave properly and share their bandwidth resources

altruistically with their social peers (and not leech bandwidth

from social peers).

As shown in Fig. 11, the CDF between social and non-social

torrent download times follows the same pattern as the baseline

25MB tests (Fig. 6). Table VI compares the average download

time between the base run of 0 leeches with the download time

when 100 and 200 leeches are present respectively.

Fig. 12 shows the relative throughput degradation as number

of leeches is increased (from 0 to 100 and from 0 to 200). The

throughput percentages in this graph are relative to runs with-

out leeches in the swarm. Thus, although non-social swarms

have a lower throughput than social swarms, the 0 leech mark

in this graph is shown at 100%, representing no performance

degradation in comparison with each swarm type’s base case.

Leeches are intentionally configured with a very small level of

upload bandwidth capacity. Leeches are added to the swarm

before the 500 peers are started. This is done with the goal

of intentionally establishing connections to and consuming

bandwidth from the seed before other nodes start. In the case

of socially enabled swarms, we assume that although leeches

may have social relationships with each other, they have no

social relationships to other peers within the swarm. It is clear

that non-socially enabled peers have the greatest performance

degradation (25%) when faced with leeches. The most socially
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connected peers have the least performance degradation (6%).

This performance degradation delta is attributed to the fact

that peers with higher levels of social connectivity have a

larger number of peers with which they may altruistically share

bandwidth. Based on the assumption that social peers are less

likely to exhibit malicious behavior than unknown non-social

peers, SocialSwarm clients target known social peers when

deciding those peers with which to establish outgoing and

incoming connections. This may increase aversion to leeches.

By unchoking a higher number of peers concurrently in

comparison with standard BitTorrent, SocialSwarm distributes

the upload and download bandwidth used across a larger

number of peers thus diversifying the risk that any individual

malicious peer might adversely affect a client’s performance.

G. Bandwidth Contribution and Unchoke Slot Allocation

Fig. 13 shows, for a given SocialSwarm, the average per-

centage of bandwidth used for interacting with non-social

peers and, stacked on top of that, the additional percentage

of bandwidth used for interacting with non-social peers. This

figure shows that SocialSwarm does not replace interaction

with non-social peers but rather increases the percentage of

bandwidth utilized on each peer. Fig. 13 also shows the



average number of social peers a node will unchoke over

time. An offer of bandwidth to a social peer in no way

guarantees that the bandwidth will actually be used by the

offer recipient. The number of social peers that actively use

the offered bandwidth is lower than the number of nodes, also

shown in Fig. 13, that are offered bandwidth. Clearly, out of

the total number of social peers a node might have—as shown

in Fig 2—only a very small percentage of those peers would

need to be online to allow SocialSwarm to be effective.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced SocialSwarm, a novel approach

to flash file dissemination that exploits SocialDistance, which

we extract from altruism between social peers, so as to

relax the required, but inefficient, reservation of bandwidth

for resource bartering in BitTorrent. We implemented Social-

Swarm as an extension to the libtorrent library, applied a

social network topology and interaction history obtained from

Facebook, and evaluated it on a testbed of 500 independent

virtual clients. We showed that SocialSwarm reduces average

file download time by 25% to 35% compared to that of

standard BitTorrent under varied conditions—file sizes, max

SocialDistance, and leech and seed counts.

In the future, we will investigate the effect of socially

enabled leeches on SocialSwarm. Given that malicious code

commonly uses social networks for propagation, clusters of

social peers have the possibility of becoming infected. Our

future work will also include finding a dynamic way to

modify peer SocialDistance/altruism levels based on observed

behavior between individual peers as well as among clusters

of social peers.

In our work so far, we have approximated altruism to

be proportional to levels of reciprocal interaction between

peers. Our future work will include investigation of alternative

methods of estimating direct altruism among social peers. We

will also evaluate the effect of a varied HopDecay by each

SocialSwarm participant.
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